DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

INSPECTION, USE AND TIGHTENING OF METAL FASTENERS USED ON TANK-AUTOMOTIVE EQUIPMENT

HEADQUARTERS, DEPARTMENT OF THE ARMY

REPORTING OF ERRORS			
You can improve this bulletin. If you find any mistakes or if you know of any way to improve the procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) or DA Form 2028-2 directly to: Commander, US Army Tank-Automotive Command, ATTN: AMSTAMB, Warren Michigan, 48397-5000. A reply will be furnished to you.			
SECTION T.		PARAGRAPH	PAGE
	INTRODUCTION		
	Purpose	1	1
	Scope	2	1
II.	METAL FASTENERS		
	Fastener Size and Thread Pattern	3	2
	Fastener Grade	4	3
III.	INSPECTION AND USE		
	Inspection and Use	5	4
IV.	TIGHTENING METAL FASTENERS		
	Torque Wrenches	6	4
	Installation and Torquing	7	6
V.	TORQUE LIMITS		
	General	8	8
	Torque Limits	9	8
	How To Use Torque Table	10	8

SECTION I. INTRODUCTION

1. Purpose. This bulletin was developed as a result of the heightened interest in the inspection, use and tightening of metal fasteners. It includes selection and use of torque wrenches. The information contained in this bulletin will be incorporated into new technical manuals as they are developed and into existing manuals as they are revised.
2. Scope. This bulletin applies to metal fasteners that are inspected or used in maintenance operations.

Approved for public release; distribution is unlimited.

SECTION II. METAL FASTENERS

3. Fastener Size and Thread Pattern. Threaded fasteners are categorized according to diameter of the fastener shank. Thread styles are divided into broad groups, the two most common being coarse (Unified Coarse-UNC) and fine (Unified Fine-UNF). These groups are defined by the number of threads per inch on the bolt shanks. In addition, threads are categorized by thread class, which is a measure of the degree of fit between the threads of the bolt or screw (external threads) and the threads of the attaching nut or tapped hole (internal threads). The most common thread class for bolts and screws is Class 2.

TABLE 2-1. THREAD CLASSES

1 A	1 B	LOOSE FIT
2 A	2 B	MEDIUM FIT
3 A	3 B	CLOSE FIT

Thread patterns are designated as follows:

Note: Unless followed with -LH (e.g. 3/4-1 OUNCE-2A-LH), threads are right hand.

Figure 1. Thread Description
4. Fastener Grade. In addition to being classified by thread type, threaded fasteners are also classified by material. The most familiar fastener classification system is the SAE grading system.

Figure 2. SAE Screw and Bolt Markings

Note:
Torque values for Grade 8.2 bolts are the same as for Grade B.

Figure 3. Markings On Hex Locknuts

SECTION III. INSPECTION AND USE

5. Inspection and Use. Cotter pins, lockwashers, lockwire, locking bolts, locking nuts and similar locking devices shall be discarded when removed. Self-locking fasteners that loosen up must be replaced, not tightened. Standard (non-locking) bolts shall be inspected before reuse. Bolts with deformed or damaged threads shall be discarded. Any corroded (rusted) fasteners should be wiped clean. If the surface of the fastener is pitted or rust is not removed by simple wiping, discard the fastener. New bolts and nuts shall be examined before use. Bolt shanks (see Figure 1) shall display no apparent taper. The correct size and grade bolt must be used in each application.

SECTION IV. TIGHTENING METAL FASTENERS

6. Torque Wrenches. Torque wrenches are used to measure the specific degree of tightness during final tightening of nuts and bolts and should not be used for anything else. Since torque wrenches are considered precision instruments they must be calibrated at regular intervals to ensure accuracy. Torque wrenches are a combination wrench and measuring tool. Torque wrenches may be direct reading (dial or gage) or be signaling devices that announce when a predetermined torque is reached. Torque limits commonly used are in pound inch and pound foot.

Figure 4. Torque Force

Note

- To convert pound inches to pound feet, divide by 12.
- To convert pound feet to pound inches, multiply by 12.

SECTION IV. TIGHTENING METAL FASTENERS (Cont)

When torquing a fastener, select a wrench whose range fits the required torque value. A torque wrench is most accurate from 25% to 75% of its stated range. A wrench with a stated range of 0 to 100 Pound Feet will be most accurate from 25 to 75 Pound Feet. The accuracy of readings will decrease as you approach 0 Pound Feet or 100 Pound Feet. The following ranges are based on this principle.

Figure 5. Torque Readings

Figure 6. Ranges of Torque

TABLE 3-1. TORQUE RANGES

STATED RANGE	MOSTEFFECTIVE RANGE
$0-200 \mathrm{LB} / I N$	$50-150 \mathrm{LB} / \mathrm{IN}$
$0-600 \mathrm{LB} / \mathrm{FT}$	$50-450 \mathrm{LB} / \mathrm{FT}$
$0-170 \mathrm{LB} / \mathrm{FT}$	$44-131 \mathrm{LB} / \mathrm{FT}$
$15-75 \mathrm{LB} / \mathrm{FT}$	$30-60 \mathrm{LB} / \mathrm{FT}$

7. Installation and Torquing.
a. Matching Nuts. Matching nuts require a minimum height (see Figure 1 equal to the basic diameter of the bolt. The same is true of tapped holes. In tapped softer materials, the depth of the tapped hole should be 1-1/2 times the basic diameter of the bolt.
b. Thread Protrusion. In all installations, bolts, studs and screws must extend through the nut at least a length equivalent to two complete threads (see Figure1). This applies to both self-locking and plain nuts.
c. Torquing Self-Locking Nuts. To obtain the correct recommended torque value on self-locking nuts, the nut must be tightened until it is one turn from the beginning of seating. At this point, if the torque is less than $1 / 3$ of the recommended torque, it should be disregarded and the nut tightened to the recommended torquevalue. If the torque is $1 / 3$ or more of the recommended torque, it should be added to the recommended torque. Example: The recommended torque is 50 to $70 \mathrm{LB} / \mathrm{IN}(6$ to 8 NM). The torque at one turn from seating is $30 \mathrm{LB} / \mathrm{IN}(3 \mathrm{NM})$. The correct torque wrench reading would be 80 to $100 \mathrm{LB} / \mathrm{IN}(9$ to 11 NM).
d. Retorquing Fasteners. Procedures intended for installing metal fasteners can cause an incorrect reading when used to check or retorque already installed fasteners during maintenance. Before checking or retorquing an already installed threaded fastener, first mark the fastener and its companion components so the marks are in line. Second, back it off a $1 / 4$ turn to loosen it. Torque it to the specification with an even steady pull on the torque wrench. The marks should be in line; if not, the marks will indicate the fastener was under or over torqued.
e. Standard Torque Charts. Standard torque charts have been established for dry and wet torque conditions. Surface variations such as thread roughness, scale paint, lubrication (oil, grease, etc.) hardening and plating may alter these values considerably. The following are standard torque charts. If vehicle technical manuals list different torques always use the readings listed in the vehicle technical manuals.

NOTE

- Grades B and C apply to SAE class nuts only.
- Table 4-1 applies to COARSE threads.

TABLE 4-1. STEEL HEX LOCKNUTS
RELATIONSHIP OF THREAD SIZE, TORQUE AND GRADE

SIZE \& \# THREADS	GRADE B	GRADE C	GRADE B	GRADE C
1/4-20	60-85 LB/IN	85-125 LB/IN	7-10 N/M	10-14 N/M
5/16-18	110-150 LB/IN	130-190 LB/IN	$15-21$ N/M	15-21 N/M
3/8-16	15-20 LB/FT	20-28 LB/FT	20-27N/M	27-38 N/M
7/16-14	23-32 LB/FT	31-43 LB/FT	31-43N/M	42-58 N/M
1/2-13	37-50 LB/FT	45-63 LB/FT	50-68 N/M	61-85 N/M
9/16-12	50-70 LB/FT	70-90 LB/FT	$68-95 \mathrm{~N} / \mathrm{M}$	95-122 N/M
5/8-11	70-95 LB/FT	90-123 LB/FT	95-129 N/M	122-166 N/M
3/4-10	125-165 LB/FT	155-210 LB/FT	170-224 N/M	210-285 N/M
7/8-9	185-250 LB/FT	225-313LB/FT	251-339 NM	305-423 NM
1/8	275-375 LB/FT	350-463LB/F	T373-509 NM	475-627 NM

NOTE

- Grades B and C apply to SAE class nuts only.
- The following table applies to FINE threads.

TABLE 4-2. STEEL HEX LOCKNUTS
RELATIONSHIP OF THREAD SIZE, TORQUE AND GRADE

SIZE \& \# THREADS	GRADE B	GRADE C	GRADE B	GRADE C
$1 / 4-28$	$65-90 ~ L B / I N$	$85-125 ~ L B / / N$	$7-10 \mathrm{~N} / \mathrm{M}$	$10-14 \mathrm{~N} / \mathrm{M}$
$5 / 16-24$	$120-160 \mathrm{LB} / \mathrm{IN}$	$140-200 \mathrm{LB} / \mathrm{FT}$	$14-18 \mathrm{~N} / \mathrm{M}$	$16-23 \mathrm{~N} / \mathrm{M}$
$3 / 8-24$	$16-22 \mathrm{LB} / \mathrm{FT}$	$21-29 \mathrm{LB} / \mathrm{FT}$	$22-30 \mathrm{~N} / \mathrm{M}$	$28-39 \mathrm{~N} / \mathrm{M}$
$7 / 16-20$	$24-34 \mathrm{LB} / \mathrm{FT}$	$31-43 \mathrm{LB} / \mathrm{FT}$	$33-46 \mathrm{NM}$	$42-58 \mathrm{~N} / \mathrm{M}$
$1 / 2-20$	$38-53 \mathrm{LB} / \mathrm{FT}$	$50-70 \mathrm{LB} / \mathrm{FT}$	$51-71 \mathrm{~N} / \mathrm{M}$	$68-95 \mathrm{~N} / \mathrm{M}$
$9 / 16-18$	$58-78 \mathrm{LB} / \mathrm{FT}$	$70-95 \mathrm{LB} / \mathrm{FT}$	$78-105 \mathrm{~N} / \mathrm{M}$	$95-129 \mathrm{~N} / \mathrm{M}$
$5 / 8-18$	$120-165 \mathrm{LB} / \mathrm{FT}$	$155-210 \mathrm{LB} / \mathrm{FT}$	$163-224 \mathrm{~N} / \mathrm{M}$	$210-285 \mathrm{~N} / \mathrm{M}$
$7 / 8-14$	$200-270 \mathrm{LB} / \mathrm{FT}$	$\mathbf{2 2 5 - 3 1 3 \mathrm { LB } / \mathrm { FT }}$	$271-366 \mathrm{~N} / \mathrm{M}$	$305-424 \mathrm{~N} / \mathrm{M}$
$1-14$	$300-400 \mathrm{LB} / \mathrm{FT}$	$\mathbf{3 6 3 - 5 0 0 L B} / \mathrm{FT}$	$407-542 \mathrm{~N} / \mathrm{M}$	$492-678 \mathrm{~N} / \mathrm{M}$

SECTION V. TORQUE LIMITS

8. General. This section provides general torque limits for screws used on Tank-Automotive Equipment. Special torque limits are indicated in the maintenance procedures for applicable components. The general torque limits given in this section shall be used when specific torque limits are not indicated in the maintenance procedure. These general torque limits cannot be applied to screws that retain rubber components. The rubber components will be damaged before the torque limit is reached. If a special torque limit is not given in the maintenance instructions, tighten the screw or nut until it touches the metal surface, then tighten it one more turn.
9. Torque Limits. Table 5-1 lists dry torque limits. Dry torque limits are used on screws that do not have lubricants applied to the threads. Table 5-2 lists wet torque limits. Wet torque limits are used on screws that have high pressure lubricants applied to the threads. Table 5-3 lists torque limits for metric fasteners.

10. How To Use Torque Table.

a. Measure the diameter of the screw you are installing.

b. Count the number of threads per inch.
c. Under the heading SIZE, look down the left hand column until you find the diameter of the screw you are installing (there will usually be two lines beginning with
the same size).
d. In the second column under SIZE, find the number of threads per inch that matches the number of threads you counted in step 2. (Not required for metric screws).

CAPSCREW HEAD MARKINGS

Manufacturer's marks may vary. These are all SAE Grade 5 (3-line).

e. To find the grade screw you are installing, match the markings on the head to the correct picture of CAPSCREW HEAD MARKINGS on the torque table.
f. Look down the column under the picture you found in step 5 until you find the torque limit (IN/LB/Fr or NM) for the diameter and threads per inch of the screw you are installing.

TABLE 5-1. TORQUE LIMITS FOR DRY FASTENERS

CAPSCREW HEAD MARKINGS MANUFACTURER'S MARKS MAY VARY. THESE ARE ALL SAE GRADE 5 (3-line)										
	SIZE			$\begin{aligned} & \text { GRADE } \\ & 0.2 \end{aligned}$	SAE	RADE . 5		$\begin{aligned} & \text { RADE } \\ & \text { OR } 7 \end{aligned}$		$\begin{aligned} & \text { RADE } \\ & .8 \end{aligned}$
Dia. Inches	Threads Per Inch	Millimeters	Pound Feet	Newton Meters						
1/4	20	6.35	5	7	8	11	10	14	12	16
1/4	28	6.35	6	9	10	14	12	16	14	19
5/16	18	7.94	11	15	17	23	21	28	25	34
5/16	24	7.94	12	16	19	26	24	33	25	34
3/8	16	9.63	20	27	30	41	40	54	45	61
3/8	24	9.53	23	31	35	47	45	61	50	68
7/16	14	11.11	30	41	50	68	60	81	70	95
7/16	20		35	47	55	75	70	95	80	108
1/2	13	12.70	50	68	75	102	95	129	110	149
1/2	20		55	75	90	122	100	136	120	163
9/16	12	14.29	65	88	110	149	135	183	150	203
9/16	18		75	102	120	163	150	203	170	231
5/8	11	15.88	90	122	150	203	190	258	220	298
5/8	18		100	136	180	244	210	285	240	325
3/4	10	19.05	160	217	260	353	320	434	380	515
3/4	16		180	244	300	407	360	488	420	597
7/8	9	22.23	140	190	400	542	520	705	600	814
7/8	14		155	210	440	597	580	786	660	895
1	8	25.40	220	298	580	786	800	1085	900	1220
1	12		240	325	640	868	860	1166	1000	1356
1-1/8	7	25.58	300	407	800	1085	1120	1519	1280	1736
1-1/8	12		340	461	880	1193	1260	1709	14401	953
1-1/4	7	31.75	420	570	1120	1519	1580	2142	1820	2468
1-1/4	12		460	624	1240	1681	1760	2387	2000	2712
1-3/8	6	34.93	560	759	1460	1980	2080	2820	2380	3227
1-3/8	12		640	868	1680	2278	2380	3227	2720	3688
1-1/2	6	38.10	740	1003	1940	2631	2780	3700	3160	4285
1-1/2	12		840	1139	2200	2983	3100	4204	3560	4827

TABLE 5-2. TORQUE LIMITS FOR WET FASTENERS

CAPSCREW HEAD MARKINGS Manufacturer's marks may vary These are all SAE Grade 5 (3-line)										
SIZE			TORQUE							
			SAE	$\begin{aligned} & \text { GRADE } \\ & 0.2 \end{aligned}$	SAE GRADE NO. 5		$\begin{aligned} & \text { SAE GRADE } \\ & 06 \text { OR } 7 \end{aligned}$		SAE GRADE NO. 8	
Dia. Inches	Threads Per Inch	Millimeters	Pound Feet	Newton Meters						
1/4	20	6.35	4	6	6	8	8	11	9	12
1/4	28	6.35	5	7	7	9	9	12	10	14
5/16	18	7.94	8	11	3	18	16	22	18	24
6/16	24	7.94	9	12	14	19	18	24	20	27
3/8	16	9.53	15	20	23	31	30	41	35	47
3/8	24	9.53	17	23	25	34	30	41	35	47
7/16	14	11.11	24	33	35	47	45	61	55	75
7/16	20		25	34	40	54	50	68	60	81
1/2	13	12.70	35	47	55	75	70	95	80	108
1/2	20		40	54	65	88	80	108	90	122
9/16	12	14.29	50	68	80	108	100	136	110	149
9/16	18		55	75	90	122	110	149	130	176
5/8	11	15.88	70	95	110	149	140	190	170	231
5/8	18		80	108	130	176	160	217	180	244
3/4	10	19.05	120	163	200	271	240	325	280	380
3/4	16		140	190	220	298	280	380	320	434
7/8	9	22.23	110	149	300	407	400	542	460	624
7/8	14		120	163	320	434	440	597	500	678
1	8	25.40	160	217	440	597	600	814	680	922
1	12		170	231	480	651	660	895	740	1003
1-1/8	7	25.58	220	298	600	814	840	1139	960	1302
1-1/8	12		260	353	660	895	940	1275	1080	1464
1-1/4	7	31.75	320	434	840	1139	1100	1492	1360	1844
1-1/4	12		360	488	920	1248	1320	1790	1500	2034
1-3/8	6	34.93	420	570	1100	1492	1560	2115	1780	2414
1-3/8	12		460	624	1260	1709	1780	2414	2040	2766
1-1/2	6	3810	560	760	1460	1980	2080	2820	2360	3200
1-1/2	12		620	841	1640	2224	2320	3146	2660	3607

SECTION V. - TORQUE LIMITS (Cont)

TABLE 5-3. DRY TORQUE LIMITS FOR METRIC FASTENERS

By Order of the Secretary of the Army:

CARL E. VUONO
General, United States Army Chief of Staff

Official:
PATRICIA P. HICKERSON
Colonel, United States Army
The Adjutant General
Distribution:
To be distributed in accordance with DA Form 12-34-E, block 3850, Unit maintenance requirements for TB 43-0218.

THE METRIC SYSTEM AND EQUIVALENTS

NEAR MEASURE

Centimeter $=10$ Millimeters $=0.01$ Meters $=0.3937$ Inches 1 Meter $=100$ Centimeters $=1000$ Millimeters $=39.37$ Inches 1 Kilometer $=1000$ Meters $=0.621$ Miles
'VEIGHTS
Gram $=0.001$ Kilograms $=1000$ Milligrams $=0.035$ Ounces $1 \mathrm{Kilogram}=1000 \mathrm{Grams}=2.2 \mathrm{lb}$.
1 Metric Ton = 1000 Kilograms = 1 Megagram = 1.1 Short Tons

LIQUID MEASURE

1 Milliliter $=0.001$ Liters $=0.0338$ Fluid Ounces
1 Liter $=1000$ Milliliters $=33.82$ Fluid Ounces

SQUARE MEASURE

1 Sq. Centimeter $=100$ Sq. Millimeters $=0.155$ Sq. Inches 1 Sq. Meter $=10,000 \mathrm{Sq}$. Centimeters $=10.76$ Sq. Feet
1 Sq. Kilometer $=1,000,000 \mathrm{Sq}$. Meters $=0.386$ Sq. Miles

CUBIC MEASURE

1 Cu. Centimeter $=1000 \mathrm{Cu}$. Millimeters $=0.06 \mathrm{Cu}$. Inches 1 Cu. Meter $=1,000,000 \mathrm{Cu}$. Centimeters $=35.31 \mathrm{Cu}$. Feet

TEMPERATURE

$5 / 9\left({ }^{\circ} \mathrm{F}-32\right)={ }^{\circ} \mathrm{C}$
212° Fahrenheit is evuivalent to 100° Celsius
90° Fahrenheit is equivalent to 32.2° Celsius
32° Fahrenheit is equivalent to 0° Celsius
$9 / 5 \mathrm{C}^{\circ}+32={ }^{\circ} \mathrm{F}$

APPROXIMATE CONVERSION FACIORS

to Change	TO	MULTIPLY BY
Inches	Centimeters	2.540
Feet	Meters.	0.305
Yards	Meters	0.914
Miles	Kilometers	1.609
Square Inches	Square Centimeters.	6.451
Square Feet	Square Meters	0.093
Square Yards	Square Meters	0.836
Square Miles	Square Kilometers	2.590
Acres	Square Hectometers	0.405
Cubic Feet	Cubic Meters	0.028
Cubic Yards	Cubic Meters	0.765
Fluid Ounces	Milliliters.	29.573
its	Liters.	0.473
arts.	Liters.	0.946
, allons	Liters.	3.785
Ounces	Grams	28.349
Pounds	Kilograms	0.454
Short Tons	Metric Tons	0.907
Pound-Feet	Newton-Meters	1.356
Pounds per Square Inch	Kilopascals	6.895
Miles per Gallon........	Kilometers per Liter	0.425
Miles per Hour	Kilometers per Hour .	1.609
TO CHANGE	TO	MULTIPLY BY
Centimeters	Inches	0.394
Meters.	Feet	3.280
Meters.	Yards	1.094
Kilometers	Miles	0.621
Square Centimeters	Square Inches	0.155
Square Meters...	Square Feet. .	10.764
Square Meters.	Square Yards	1.196
Square Kilometers.	Square Miles.	0.386
Square Hectometers	Acres	2.471
Cubic Meters	Cubic Feet	35.315
Cubic Meters	Cubic Yards	1.308
Milliliters.	Fluid Ounces	0.034
Liters.....	Pints.........	2.113
Liters.	Quarts.	1.057
'ers.	Gallons	0.264
ms.	Ounces	0.035
. Ograms	Pounds	2.205
Metric Tons.	Short Tons	1.102
Newton-Meters	Pounds-Feet	0.738
Kilopascals	Pounds per Square Inch	0.145
${ }^{-1}$ ometers per Liter	Miles per Gallon.......	2.354
smeters per Hour.	Miles per Hour. .	0.621

PIN: 049179-000

